
Sector vs. Hadoop

A Brief Comparison Between the Two Systems

BackgroundBackground
 Sector is a relatively “new” system that is broadly comparable

to Hadoop, and people want to know what are the differences.

 Is Sector simply another clone of GFS/MapReduce? No.

 These slides compare most recent versions of Sector and
Hadoop as of Nov. 2010.
 Both software are still under active development.

 If you find any inaccurate information please contact Yunhong  If you find any inaccurate information, please contact Yunhong
Gu [yunhong.gu # gmail]. We will try to keep these slides
accurate and up to date.

Design Goals

Sector Hadoop

 Three-layer functionality:
 Distributed file system

 Two-layer functionality:
 Distributed file systemy

 Data collection, sharing, and
distribution (over wide area
networks)

y
 Massive in-storage parallel

data processing with
simplified interface networks)

 Massive in-storage parallel
data processing with

simplified interface

simplified interface

History

Sector Hadoop

 Started around 2005 - 2006, as
a P2P file sharing and content
distribution system for

 Started as a web crawler
& indexer, Nutch, that distribution system for

extreme large scientific
datasets.

 Switched to centralized general

adopted GFS/MapReduce
between 2004 – 2006.

 Switched to centralized general
purpose file system in 2007.

 Introduced in-storage parallel
data processing in 2007

 Y! took over the project
in 2006. Hadoop split from
Nutchdata processing in 2007.

 First “modern” version
released in 2009.

Nutch.
 First “modern” version

released in 2008.

Architecture

Sector Hadoop

 Master-slave system
 Masters store metadata,

 Master-slave system
 Namenode stores  Masters store metadata,

slaves store data
 Multiple active masters

 Namenode stores
metadata, datanodes store
data

 Clients perform IO
directly with slaves

 Single namenode (single
point of failure)
Cli f IO  Clients perform IO
directly with datanodes

Distributed File System

Sector HDFS

 General purpose IO
 Optimized for large files

 Write once read many (no
random write) Optimized for large files

 File based (file not split by
Sector but users have to

)
 Optimized for large files
 Block based (64MB block

take care of it)
 Use replication for fault

l

as default)
 Use replication for fault

ltolerance tolerance

Replication

Sector HDFS

 System level default in
configuration

 Per file replica factor can be

 System level default in
configuration

 Per-file replica factor can be
specified in a configuration
file and can be changed at
run-time

g
 Per-file replica factor is

supported during file run time
 Replicas are stored as far

away as possible, but within
a distance limit, configurable

creation
 For 3 replicas (default), 2

on the same rack the 3rd , g
at per-file level

 File location can be limited
to certain clusters only

on the same rack, the 3rd
on a different rack

y

Security

Sector Hadoop

 A Sector security server is
used to maintain user

d ti l d i i

 Still in active development,
new features in 2010

credentials and permission,
server ACL, etc.

 Security server can be

 Kerberos/token based
security framework to

extended to connect to
other sources, e.g., LDAP

 Optional file transfer

authenticate users
 No file transfer

encryptionp
encryption

 UDP-based hole punching
firewall traversing for clients

encryption

firewall traversing for clients

Wide Area Data Access

Sector HDFS

 Sector ensures high
performance data transfer with
UDT a high speed data transfer

 HDFS has no special
consideration for wide UDT, a high speed data transfer

protocol
 As Sector pushes replicas as far

away from each other as

area access. Its
performance for remote

 ld b l t away from each other as
possible, a remote Sector client
may find a nearby replica

 Thus Sector can be used as

access would be close to a
stock FTP server.

 Its security mechanism  Thus, Sector can be used as
content distribution network
for very large datasets

 Its security mechanism
may also be a problem for
remote data access.

In-Storage Data Processing

Sphere Hadoop MapReduce

 Apply arbitrary user-
defined functions (UDFs)

 Support the MapReduce
framework()

on data segments
 UDFs can be Map, Reduce,

or others
 Support native

MapReduce as wellMapReduce as well

Sphere UDF vs. Hadoop MapReduce

Sphere UDF Hadoop MapReduce

 Parsing: permanent record
offset index if necessary

 Parsing: run-time data
parsing with default or

 Data segments (records,
blocks, files, and directories)
are processed by UDFs

p g
user-defined parser

 Data records are
are processed by UDFs

 Transparent load balancing
and fault tolerance

processed by Map and
Reduce operations

 Transparent load balancing
 Sphere is about 2 – 4x faster

in various benchmarks

 Transparent load balancing
and fault tolerance

Why Sphere is Faster than Hadoop?Why Sphere is Faster than Hadoop?
 C++ vs. Java
 Different internal data flows
 Sphere UDF model is more flexible than MapReduce
 UDF dissembles MapReduce and gives developers more control to

the processthe process
 Sphere has better input data locality
 Better performance for applications that process files and group of

files as minimum input unitfiles as minimum input unit
 Sphere has better output data locality
 Output location can be used to optimize iterative and combinative

 h processing, such as join
 Different implementations and optimizations
 UDT vs. TCP (significant in wide area systems)U vs. C (s g ca t w a a syst s)

Compatibility with Existing Systems

Sector/Sphere Hadoop

 Sector files can be
accessed from outside if

 Data in HDFS can only be
accessed via HDFS interfaces
I H d bl h necessary

 Sphere can simply apply an
existing application

 In Hadoop, executables that
process files may also be
wrapped in Map or Reduce
operations but will cause extra existing application

executable on multiple
files or even directories in
parallel if the executable

operations, but will cause extra
data movement if file size is
greater than block size

 Hadoop cannot process parallel, if the executable
accepts a file or a
directory as input

 Hadoop cannot process
multiple files within one
operation.

ConclusionsConclusions
 Sector is a unique system that integrates distributed file

system, content sharing network, and parallel data system, content sharing network, and parallel data
processing framework.

 Hadoop is mainly focused on large data processing within
a single data center.

 They overlap on the parallel data processing support.

Our RecommendationsOur Recommendations
 Consider using Sector if:
 You need a scalable fault-tolerant general purpose file system You need a scalable, fault tolerant, general purpose file system
 You have data across multiple data centers
 You have users who upload and download data from remote

locations
 You are a C++ programmer
 You have many legacy applications and you don’t want to re You have many legacy applications and you don t want to re-

write them to suit a new platform
 You value the fact that Sphere is about 2 – 4 times faster than

Hadoop

Our Recommendations (cont.)Our Recommendations (cont.)
 Consider using Hadoop if:
 You are a Java programmer You are a Java programmer
 It is important for you to have data semantic support such as

HBase or Hive
 You can benefit from reusing existing packages from the larger

Hadoop community

